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1 Introduction

The concept of wave-particle duality is a fundamental one in quantum mechanics, which states that particulate
matter (for example electrons or photos) can behave as both waves and particles. This has been demonstrated
experimentally by firing a beam of electrons through a very fine double slit (analogous to Thomas Young’s experiment
with light in 1801). They are shown to create a diffraction pattern on a screen behind the slits (as light would), thus
suggesting that electrons are waves. However, placing a detector by one of the slits results in the pattern on the
screen changing, and instead of a diffraction pattern you see two ’piles’ of electrons, as if they were now behaving
as particles. This has revealed two items of weirdness:

1. Electrons can behave as both waves and particles.a

2. This behaviour changes when they are observed directly.

This is strange, and the more one tries to consider it the weirder it becomes, but it has been shown to match reality
by many experiments to a great degree of precision, so it is currently the best theory we have. A very thorough
understanding of why and how this quantum strangeness occurs is outside of the scope of this course (indeed senior
physicists spend their careers arguing about it), but some of the consequences of this theory are very important for
understanding the chemical processes that govern life, so it is worth taking time to appreciate (albeit at a relatively
superficial level) these results.

2 Particle in a Box

Another key result from quantum mechanics is that the energy levels available to particles are quantized; in other
words their energies are restricted to certain values. Again this has been very well shown experimentally, but it
seems strange in our macroscopic world. To understand how this quantization comes about, consider taking a
particle (for example an electron) and trapping it in a very small box of length L with solid walls, so that it cannot
escape. We know from the wave-particle duality illustrated above that this electron behaves as both a particle and
a wave, so it is convenient (and valid) to consider it as a wave when thinking about the energy it is allowed to
have. It is a postulateb of quantum mechanics that the square of the wavefunction at a certain position is related
to the probability of finding a particle at that position. We have said that the particle can exist inside the box, but
cannot ever leave this box, thus the probability of finding it outside the box is 0. We have said that the square of
the wavefunction at a point is related to the probability of finding the particle at that point, thus as the particle
cannot exist outside of the box, the value of the wavefunction at all points outside of the box and at each wall of
the box c must be 0. This is illustrated in Figure 1a.

These are called boundary conditions, and are the key to the quantization of the energy levels.

aThe analogy extends to other particles - indeed this experiment has been repeated with buckyballs!
bPostulates are fundamental to quantum mechanics, and are assumptions or principles that are accepted without formal proof (the

‘proof’ is that the theories we derive having assumed them can be experimentally shown to be true to a high degree of accuracy - the
proof is in the pudding)

cIt turns out that waves in quantum mechanics must be continuous; this means that they can never suddenly drop to a different
value, but must gradually approach that value smoothly. This means that the value of the wavefunction at the very edge of the box
must be 0 too, otherwise a situation would arise where the wavefunction had a non-zero value at the very edge of the box, and then
must immediately drop to 0, which would give a vertical line with an infinite gradient, which is not allowed!
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Value of Wavefunction at x = 0 is 0
Value of Wavefunction at x = L is 0

These boundary conditions mean that not all waves are allowed to exist in the box; a wave that was not 0d at the
edge of the box would imply that the particle could exist outside of the box, which we have already said is not
possible.
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(a) The box to trap the particle in. The particle can

exist in the white space within the box, but cannot

exist in the areas shaded red. Here the wavefunction

must take a value of 0.
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(b) The allowed wavefunctions. Note that they all have

zero amplitude at the edges of the box.

Figure 1. The Particle in a box.

To determine the energies of the allowed waves, first consider the allowed wavelengths. In order for the boundary
conditions to be satisfied (the amplitude of the wave must be 0 at x = 0 and x = L), the wave must have completed
either half an oscillation (see Figure 2, where it is clear that after half a wavelength the amplitude of the wavefunction
is 0; this situation is demonstrated for the particle in a box in Figure 1b E1 where half of a complete oscillation
spans the length of the box, thus in this situation λ

2 = L) or a full oscillation (The situation illustrated in Figure
1b E2, where one complete oscillation of the wave spans the length of the box, thus λ = L). Figure 2 shows that
the amplitude of the wave is also 0 at 3λ

2 , 2λ, and generally at nλ
2 , so if these multiples of the wavelength are equal

to the length of the box, these are also valid wavefunctions for the particle in a box. Mathematically this is stated
as nλ

2 = L, or more helpfully

λ =
2L

n
(1)
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Figure 2. The wavelength of a sinusoidal wave. One wavelength (λ) is a complete oscillation of the wave (the amplitude and

direction of the wave at x = λ is the same as at x = 0. All the points on the wave where the amplitude is 0 are marked by

red dots.

These are the allowed wavelengths for the particle in a box that meet the boundary conditions of the wave having 0
amplitude at each end. To calculate the energies of these allowed wavelengths, first consider the de Broglie relation
λ = h

p , which helpfully relates the wavelength of a wave to its momentum. Knowing that the kinetic energy of

a particle is given by 1
2mv2, putting this in terms of momentum (p = mv) then allows the substitution of the de

Broglie relation, which we can use to find the energies of the allowed wavelengths.

Kinetic Energy =
1

2
m · v2 =

p2

2m
dFormally has non-zero amplitude
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K.E. =
p2

2m
=

(hλ )
2

2m
=

h2

2m · λ2
(2)

Now, using the expression for the allowed wavelengths in Equation 1, it is possible to derive the expression for the
energies of the allowed wavelengths.

K.E. =
h2

2m · ( 2Ln )2

En =
n2 · h2

8m · L2
(3)

There are a few interesting points to note about this expression:

1. As n can only be an integer, the energies available to this particle can only take certain values, thus we say
it is quantized.

2. The energies are inversely proportional to L, so a smaller box gives particles with higher energy levels.

3. The energy levels are proportional to n2, so the gaps between energy levels increases as n increases, thus the
gap from n = 1 → 2 is much smaller than the gap from n = 2 → 3, and so on.

It might seem that this is quite an abstract model, after all why would one trap a particle in a box at all? However,
this is almost directly analogous to the behaviour of electrons in atoms. In an atom, the negatively charged electron
is attracted to the positively charged nucleus by the Coulomb force (the electrostatic attraction between opposing
charges). It turns out that the potential energy as a result of this attraction is equivalent to ‘trapping’ the particle
in a box (albeit this time a 3-dimensional box), where the boundary conditions are set by the required behaviour of
the electron at x = ∞ and as the electron approaches the nucleus. The allowed waves that satisfy these boundary
conditions are found in a very similar manner to that illustrated above, and the wavefunctions that result are the
atomic orbitals that you have met in chemistry (for example the 2s orbital is simply the name of a wavefunction
with n = 2 - the same n as in the example above).

3 Particle on a Ring

A very similar situation is that for the particle confined on a ring. Again the boundary conditions that are imposed
determine the quantization of the energy levels, but now the boundary conditions are subtly different. Whereas for
the particle in a box the boundary conditions were that the amplitude of the wave must be 0 at both x = 0 and
x = L, for the particle in a ring the wave must have completed a full oscillation (that is a complete wavelength)
after one full circumference of the ring. This is because not only does the amplitude of the wave need to be the
same after a full circumference, but the direction of the wave (the phase) must also be the same. This means that,
as illustrated in Figure 3, allowed wavelengths must correspond to one whole circumference, thus the boundary
conditions in this case are lλ = 2πr

Calculating the energy levels for these allowed waves is now exactly the same as the for the particle in a 1-dimensional
box; simply substitute the expression for the allowed wavelengths on a ring into Equation 3.

λ =
2πr

l

K.E. =
h2

2m · λ2

=
h2

2m · ( 2πrl )2

=
l2 · h2

2m(2π)2r2
(4)
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circumference = 2π · r

λ = 2π · r

2λ = 2π · r

Figure 3. The relation between the circumference of the ring, and the allowed wavelengths. As the wave must have completed

a full oscillation after a circumference of the ring, only integer multiples of the wavelength that equal the circumference are

allowed.

This is a correct expression for the energy levels of the particle in a ring, however it is possible to make this look
more beautiful by including the reduced Planck’s constant h̄ = h

2π . This gives the final equation for the energy
levels of a particle confined to a ring:

El =
l2 · h̄2

2mr2
(5)

Just as for the particle in a box, these levels are quantized - only integer values of l are permitted. As the energy
levels again depend on l2, the separation between adjacent energy levels increases significantly with l.

Important Aside: n vs l

The key difference will be discussed later on in the course, but it is important that you have an idea of the
differences between the quantum numbers n and l.

In the particle in a box derivation, we used n, which is analogous to the principal quantum number that
you will come across when atomic orbitals are covered. This takes integer values from n = 1, 2, 3, ...,∞.
Crucially, the lowest energy level for the particle in a box is n = 1.

For the particle on a ring, l is used as the quantum number, which is analogous to the orbital angular
momentum quantum number that will arise when atomic orbitals are covered. This takes integer values
from l = 0 to l = n− 1 in integer steps.a This means that the lowest energy level for the particle in a ring
corresponds to l = 0, which has an energy of 0.b

The precise reasons why n ̸= 0 but l can is a little complex, so do not worry about this.c It is sufficient for
this course just to learn the below summary:

n = 1, 2, 3, ...∞
l = 0, 1, 2, ... n− 1

aThis is exactly the same as s, p, d, and f orbitals that you have covered in chemistry. When a 2p orbital is discussed, this
really means that n = 2 and l = 1. This also explains why d orbitals only appear in the third row of the periodic table where
n = 3, therefore it is possible for l = 2, which corresponds to a d orbital.

bThe reason this does not violate the uncertainty principle is because the particle, according to relativity, has energy mc2

on account of its mass, thus the total energy is not 0.
cFor those that are interested, this is because the boundary conditions for the particle in a box insist that the value of

the wavefunction must be 0 at either end of the box. If n = 0, the only way this could be satisfied is if the wavefunction
is 0 everywhere, which would imply that the particle does not exist at all, but we have said that it does within the box. A
contradiction! For the particle on a ring there is no requirement that the wavefunction is 0 after a full circumference, just that
it has the same value and phase. When we set l = 0, this actually implies that the wavefunction is constant around the ring,
not 0, implying that the particle is equally likely to be found at any position along the ring.
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